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SOME STATISTICAL PROPERTIES OF

WAVE-CURRENT FORCE ON OBJECTS

INTRODUCTION

When wave encounters current, its characteristics change; if the

current is in the direction of wave propagation, wave amplitude decreases

and its length increases, but if the current opposes the wave, the wave

steepens and shortens. These changes are due to the interactions between

current and wave as was explained in Ref. �!. In a random wave field,

component wave amplitude and wave length experience similar changes result.ing

in modification of frequency and wave-number spectra of surface waves �!.

Anticipating that fluid force, being directly related to fluid field kinematics,

would be similarly affected by the presence of current, properties of the spectrum

of fluid force on cylinder were investiaged �0!. Two cases were examined; that

is, when current was simply superimposed on waves and when wave-current inter-

actions were considered. It was shown that drastic changes indeed took place

in fluid force spectrum particularly when interactions are considered.

Safety analysis of flexible ocean structures requires consideration

of both catastrophic and fatique failure. The probability function and

expected rate of threshold crossings of stresses induced in the structures

are the two quantities widely used in this connection �,4,9!.

In this report, the influence of current on such statistical quantities

as the mean, standard deviation, skewness, probability function and expected

rate of threshold crossings of random fluid force are studied both with and

without wave-current interactions considered. The effects of current and

wave-current interactions on these quantities are clearly noted. For simp li-

city, only deep water stationary random waves under the influence of a steady



current uniformly distributed in depth are considered. The fluid force is

evaluated at an element of. a cylinder of unit diameter and unit length sit-

uated immediately beneath the mean. water level.

SPECTRA OF WAVI FIELD VIVE>IATICS

In evaluating fluid force, the ~Iorrison's formula is used in this

study. That is, fluid force is considered to consist of two parts, the

inertia component, linearly proportional to fluid particle acceleration,

and the drag component, nonlinearly related to fluid particle velocity,

In subsequent computation of the statistical properties of fluid force,

the quantities o, the standard deviation of fluid particle velocity anc
v

o ~, those of fluid particle acceleration and its derivative are re-
a' a'

quired. These quantities in turn are determined from their respect.ive

spectra. Thus the influence of current on wave frequency spectrum and

spectra of fluid particle velocity, acceleration and its derivative are

discussed first.

It was show~ �! that under the action of a steady current, the

frequency spectrum of the surface waves of a stationary gravity wave field

in deep water is given by

 n!
!  n!

[1+ I+ 4Un! I/2! [� + 4Un! 1/2+ � + D ! ]
g g g

in which n is total frequency, U is current velocity, g is gravitationa]

acceleration and g n! and !  n! are respectively the frequency spectrum



of surface waves with and without including the influerce of current. In

this study P  n! is taken to be

2 n

 n! = ~ exp  -8  � ! !
5 n

n

�!

the Kitaigorodskii-Pierson-l4oskowitz spectrum, in which a and 5 are non�

� 2
dimensional constants equal to O. 8 x 10 and 0. 74 respectively and n = g/W0

with W the mean wind speed. The spectra ~+ n! for various values of curren'

speed U are plotted in Fig. l. It is seen that when the current is in the

direction of the waves, that is, when U is positive, the surface spectrum

is lowered. On the other hand, under adverse current, the surface wave

cut-of f frequency in the surface wave spectrum determined by the condition

4 L1n1 + = 0 beyond which no waves can exist.
g

The spectra of fluid particle velocity, acceleration and its deriva-

tive at mean water level are given by

2
 n! = n q n!

 n! = n g n!
4

aa
�!

and

y..  n! = n < n!.
6

aa
�!

The standard deviations of o of fluid particle velocity and o, - ~ ofv a' a

fluid particle acceleration and its derivative are respectively obtained

from

a = [ $, n! dn]
I/2

n

�!

spec rum increases in magnitude. When the current speed is negative, there is a
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a = [ P  n! dn]
I/2

a, aa
n

�!

a. = [ <.,  n! dn]
I/2

a ' aa

STATISTICAL MOMENTS OF FLUID FORCE

The fluid force on the cylinder of unit length, according to Morrison's

formula is

F t! = CDV t'!l «t!I + CMa t! /9!

in which a t! and V t! are respectively the fluid particle acceleration

and velocity with V t! = v t! + U, v t! being the oscillatory wave induced
2

~D
particle velocity. In Eq. 9, C = pK D and C = pK ' 4, with p, density

of water, D, diameter of cylinder and K = 0.5 to 0.7 and K = 1.4 to 2.0

the drag and inertia coefficients �! . In this study, the values of K and

K are chosen to be 0.5 and 1,4 respectively, and for convenience, but without

loss of generality, p is set equal to unity.

The expressions of the various moments of the random process F t!

werederived by Borgman �! using the moment generating function ~ These

quantities are rederived in the Appendix in a more direct manner, The

Fig, 2 shows the effect of wave-current interactions on the fluid

particle velocity spectrum g  n! under various current conditions. Spectra

of fluid particle acceleration and its derivative exhibit similar characteristics

and are not shown.
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expected value or the mean of the random force F t! js

E[F] = 2C>o2[yT Y! + � + Y !P Y! ]2
�0!

in which E [. ] denotes the expected value of the random quantity enclosed

in the bracket, y = U/o is a parameter measuring the strength of current,

1 2
Y

T y! = � exp -y /2! and P Y! = T x!dx is the error function �! . In
J2~

Eq. 10, the argument t of F t! is omitted for convenience. Under given wind

with wind speed as parameter. In the former case, the curve is skewed,

indicating that when U > o, waves are dampened thus reducing the value of

the expected fluid force whereas, when U = o, waves are amplified causing

an increase in expected fluid force. When interactions are neglected, the

curve is necessarily symmetrical. Fig~re. 3 also shows that the magnitude

of the expected fluid force increases with increase in current and wind

speed.

To further investigate the effect of wave-current interactions on

E[F], the ratio of E[F] with and without interactions considered is presented

and current conditions, the expected value of the fluid force can be computed

from Eq. 10 using Eqs. 1 through 4 and Eqs. 6 and 7. If wave-current inter-

actions are ignored, that is, if it is assumed that current does not affect

wave characteristics, E[F] can still be obtained from Eq. 10 in conjunction

with Eqs. 2, 3, 4, 6, 7 with > n! replaced by g  n! in Eqs. 3 and

In Fig. 3, the absolute value of E[F] is plotted as a function of

current speed U with and without wave-current interactions considered and
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The second moment of the fluid force F t! is

2 2 2 2 4 4 2
E[F ] = C o + C o  y + 6y + 3!

Ma Dv

and the standard deviation a of F t! is

o = <E[F ] -E [F]!
2 2 I/2

F
�2!

Plotted in Fig. 5 is the ratio of a with and without current, as a function
F

of cur rent. speed. When no interactions are considered the curve is symme t ri cal

and, with interactions the curve is skewed. It is noted that for moderat.e

positive values of current speed, the standard deviation of fluid force drops

slightly below that when there is no current. For all the cases presented

in the figure, the weaker the wind condition, the more susceptible it is

to the influence of current except when U < o and when wave-current inter-

actions are taken into account. This is due to the fact that waves produced

by lesser wind undergo excessive breaking in adverse current thus reducing

the value of o . The influence of interactions on o is also clearly exhibited

in Fig. 4 against current speed with wind speed as parameter. It is seen

that under moderate current conditions increase in wind speed tends to lessen

the effect of interactions. As current speed increases, current predominates

the expected value of F t! thus reducing the importance of interactions and

the lesser the wind speed, the earlier current overpowers the expected flu'd

force and the sooner the effect of interactions diminishes. Finally, for

the range of wind and current speed considered, the maximum effect of inter-

actions on D[F] is about 20% when U < o and 12% when U 0 o. That is, the phenomenon

of interactions is more pronounced when U < o as indicated in Figs. 1 and
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its skewness may be measured by

y = E[ F � E[F]! ]/o
3 3

F
�3!

in which the numerator is the centra'. third moment of F t! and is related

to E[F], o and E[F ] as
3

E [ F � E[ F] ! ] = E [F ] � 3o E [F] + 3a E [ F] � E [ F] .3 = 3 2 2 3

F F
�4!

In Eq. 14 the term E[F ]
3

is the third moment of F t! and is given by

+ 14 + 33 12
4 2

3
E|F ] = C a'

M a 4

6 4 2+15+45+15~3�+! 2

+ p y![ +
4!,

�5!

2
in which A = C o /2C o

Ma Dv

In Fig. 6, the absolute value of y is plotted. Several trends are

noted in the figure. First, for a given current speed, the stronger the

wind, the more skewed is F t! but less is the influence of interactions.

Secondly, skewness of F t! increases with increase in magnitude of current

in the figure. That is, for U > o, the stronger the wind, the less important

is interactions phenomenon, but the situation is reversed when U < o. This

can again be explained by the wave breaking phenomenon. Finally, for the

wind and current speeds considered the maximum effect of interactions on o
F

can be as high as 50% indicating that interactions are more important for

cr than for E[F].

While the expected value and standard deviation of F t! give indications

of the average value and. spread of the probability density function of F t!,
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speed until current predominates when the force F t! becomes almost

deterministic. Finally, under moderate current condition, wave-current

interactions tend to mal e F t! more skewed than when no interactions are

present and negative current renders F t! more skewed than positive current

does unless interactions are ignored in which case the curve is symmetrical,

PROBABII,ITY F&CTION OF FI.LID FORCE

It was pointed out by Pierson and Holmes �! both by theory and f ield

observations that the force F t! = C 'U~ V + C a, being a linear combinationD ' N

of the Gaussian inertia force and non � Gaussian drag force, is non-Gaussian.

It was further noted that the parameter '. = C�' /2C c is a measure of the
a D v

relative importance or the inertia and drag components of fluid f orce and

therefore also serves as an indicator of the degree of closeness of F tl

to a Gaussian process. Thus, the smaller the value of >, the more important

is the drag force relative to the inert ia force and the more F t! deviates

from Gaussian. Although there was no current involved in the work of Pierson

and Holmes  8!, the same conclusion was noted by Borgman  I! when the fluid

particle velocity V t! may possess a non-zero mean. It is therefore of interes-

to investigate, before taking up the subject of the probability function of

the fluid force F t!, the influence of wind and current on the quantity

In Fig. 7, the quantity X is plotted against current speed. It is

seen that when no interactions are included, 3 is independent of current

condition. When interactions are considered, current invariably renders

the process F t! less Gaussian, more so when t'ne current speed is negative
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than when it is positive. It is also observed that the higher the wind

speed, the farther removed is F t! from being Gaussian but the effect of

interaction on the value of A is also reduced. It should be mentioned her»

f  x! =   exp[ � �.,   � + s ! � A s + P! ]dsl x 2 2 v 2

X 2~C c C o
M a o M a

1 x 2 2 2+ exp[ � �   � s ! � < s � ~! ]ds!.
2 C c

0 M a

�6!

The integrals in Eq. 16 can nc t be carried out exactly and are there-

fore performed numerically.

Presented in Fig. Ba, are the probability density functions of

X = F t! with current speed U = 0, and U = 3 f t./sec. When U = 3 f t. /sec..

both the cases with and without wave-current interactions considered are

given and for all cases considered the corresponding Gaussian approximation

is also presented. When fluid force X = F t! is assumed to be Gaussian,

the probability density function f  x! is given by

that neither the moments nor the quantity !, car. provide complete and accurate

information regarding the probability structure of the random process F t!.

A more complete descriptio~ of the process F t! is contained in the pro-

bability density function.

The expression for the probability density function of F t! was derived

by Borgman �! although no numerical result was given. In this study, for

ease of reference, the probability density function f  x! of X = F t! is

rederived, using a slightly different approach, in the Appendix. The pro-

bability density function of X = F t! as derived, is
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f  x! = � exp ] � �   ! ]1 x E[F 2
X 2 a

27Ta

  1.7!

EXPECTFD RATE OF THRESHOLD CROSSINGS OF FLUID FORCE

The expression of the expected number fluid farce crosses threshold

level x, from below, per unit time, denoted by E[N  x!] and derived in

the Appendix, is

I + I
�8!E[N  x! ]�

C2 2 3/21 [I/2

in which

S 2 S x C ~zIz
I = ~ I exp[ � ~ z � U! ]exp[ � ~  � ! ]1 C 2~S~ C

with E[F] and a given in Eqs. 10 and 12 respectively. It is seen that

when U = 0, f  x! is but slightly non-Gaussian. However, when current

is present, f  x! becomes skewed and therefore non-Gaussian. In Fig. 8b,
X

the case of U = -3 ft./sec. is shown. When no interactions are taken intc

account, f  x! and its Gaussian approximation are merely the mirror image

o f those o f the case U = 3 f t. /sec. presented in Fig, 8a. When wave-currer]t

interactions are considered, it is seen that f  x! deviates appreciably from

its Gaussian approximation.

The departure of f  x! from Gaussian can also be seen by plot ting

the probability distribution function FX x! of X = F t! on Gaussian  norma !

probability paper. The cases of U = 3 f t. /sec. and U = -3 f t. /sec. are pre-
sented respectively in Figs. 9a and 9b. That fluid farce is non-Gaussian is

clearly noted.
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exp [ � ~I.B � � ! ] dzCB . A

~2SI C �9!

and

l I s1 1 2I = dz B ! exp [ � �  z � U! ]
2,. C 2C 2

V

1 x-CDz I z I 2 1 C A
exp[- � 2  ! ] [ � � P   B � � !! ] ~

C 2 ~S~ 2C
a

�0!

In these expressions,

A = 2S .  z � U!/C
va N

zl x � CDlzlz!/C~ �1!

C S,./C
2

aa

and

2226isi =a oo. � o
va a a

2 2
S =ao,

vv aa

4
S. =a

va a
�2!

S = /S//a

2 2
See = 0 0

aa vs

The integration with respect to z in Eqs. 19 and 20, of course, can only

be performed numerically.

Computed and presented in Fig. 10a and 10b are the quantity E[N  x!]+
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for wind speed W = 20 ml./hr. for the cases when the current is in the

direction of  U = 3 ft./sec.! and opposite to  U = -3 ft./sec.! the waves.

In each case, two separate conditions are examined. That is, when wav»�

current interactions are considered and ignored. From these two figures,

it is immediately apparent that wave-current interactions have profound

effects on the quantity E[N  x!].

In dealing with random phenomenon, Gaussian assumption is often in-

volved for reasons of mathematical expediency. It is therefore of int ~ r-

est to see how Gaussian approximation affects the quantity E[N  x!]. It+

is shown in the Appendix that under the assumptions made,

K[N  x! ] = exp [- �  !
F x-E [F] 2

+ 2 ra C
�3!

and

a = [Ca. +4Ca a �+v !]
2222221/2
M a Dav

�4!

Using the Gaussian Assumption of fluid forces, the quantity E[N  x! ]+

is computed for W = 20 ml. /hr. for all the cases covered in figures 10 a and

10b, and is presented in the same f igures. ln addition, in Figure 10c, the

exact value of E[N  x! ] and its Gaussian approximation are given for the case
+

when there is no current. That Gaussian assumption is inadequate to use in

the evaluation of fatigue damage when current is involved is obvious from

these figures. This is especially so when wave-current interactions are

included and when current speed is negative. The deviation of the approximate

independent, a fact which the Gaussian assumption of the processes fails t o

E [N  x! ] f rom its exact value is due largely to the fact that while the pro-
+

cesses F t! and F t! are truly uncorrelated, they are actually not stat istically
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reflect.

CONCLUDING REMARKS

In this report, it is shown that in a random wave field, the pre-

sence of even a moderate current can affect the statistical properties

of fluid force studied here to an appreciable extent especially when the

phenomena of wave-current interactions are considered. Gaussian assump-

tion, while convenient to use, is decisively inadequate in the evaluation

of probability function and expected rate of threshold crossings of fluid

force, quantities one must contend with in the evaluation of the safety

of ocean structures against catastrc >hie and fat.'gue failure.
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FIGURE 10b EXPECTED RATE OF THRESHOLD CROSSINGS OF FORCE where U = -3 ft./sec,
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FIGURE 10c EXPECTED RATE OF THRESHOLD CROSSINGS OF FORCE where U = 0

W=20 ml ./hr .Gaussian appnoa.
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APPENDIX

The expected value, standard deviation, skewness, probability

function and expected rate of threshold crossings of fluid force F t!

defined in Eq. 9 are derived in the following.

The expected value of F t! given in Eq. 9 is obtained by taking

the expected value of the quantities on both sides of the equation.

That is,

E[F] = C E[a] + C E[V~V ]  A-I!

and

E[VIVI] = V VIEV V!dV  A-2!

in which

1 1 V-U 2
f  V! = exp [ � ~   ! ]

V 2 L7
!2 Tlo v

v

 A-S!

is the probability density function of the stationary random process

V t!. The integration in Fq. A-2 can. be carried out by making the

transformation of the variable of integration v =  V � U! /o and separating
v

the integral into two integrals with limits of integration from � to

-y and from -y to respectively. Within these limits of integration the

absolute sign in Eq. A-2 can be eliminated and the integration can be per-

formed without dif f iculty. The expe -.ted value of F t! is finally as shown

in which the argument t of F t!, V t! and a t! is omitted for simplicity.

Assuming that the sea is Gaussian and a t! has zero mean value, then E[a] = n
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in Eq. 10 of the text.

The second moment of F t! is obtained by first squaring both sides

of Eq. 9 and taking the expected value. That is,

E[F ] = C E[ v+ U! ] + C E[a ] + 2C C E[a v+ U!~v+ U~].  A-4!2 4 2 2
M D M

The expected value in the first term on the right hand side of Eq. A-4

can be further reduced to

4 3 2 2,3 4
E[ v + E! ] = E[v ] + 4UE[v ] + 6U E[v ] + 4U E[v] + U

3c +6Uc +U
4,2 2

v v
 A-5!

in which zero mean properties of the Gaussian process v t! have been

used. The second term on the right hand side of Eq. A-4 is simply

CE[a] =Co
2 2 2

M a
 A-6!

To evaluate E [a v + U! v + Uj ] = E[a V~ V~ ], note that the processes V t!

and a t! are stationary and therefore are uncorrelated. Being that V t!

and a t! are jointly Gaussian, they are statistically independent, giving

E[a v+ U! Iv+ Ul] = E[aVIVI] = E [a]E[V!VI]  A-7!

But since E[a] = o, the third term on the right hand side of Eq. A-4 is
2therefore equal to zero. The f inal expression of E [F ] is given in Eq ..' L.

The third moment of F t! can be similarly obtained by first forming

3the product F  t! f rom Eq, 7 and taking the expected value. That is

E[F ] = CME[a ] + 3CMCDE[a V V[] + 3C C E[aV ] + C E[V ~ V~ ]  A-8!3 3 3 2 2 2 4 3 5
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E[a V~V ] = E[a ]E[V V] ] = 2o o [yT y! + � + y !P y! ]2 . 2, 2 2 2
 A-9!

and

i
E[aV ] = E[a]E[V ] = o,  A- lO!

r~The term E[V V j can be evaluated in the same manner as E[V~ V~ ] was

evaluated in Eq. A-2. The final result is given in Eq.

The probability density function of F t! may be constructed by

using the standard method of rrans formation of random variables �! .

Thus, let Q = C V V' ,and W = C a. The joint probability density function

of Q and W can be expressed in terms of that of V and a as

, q,w! = f  + ~, � !/ JlQW ' Va � C ' C  A- 11!

in which J = C C ~ V is the Jacobian of trans f ormation and

1 1 V � U 2 a 2
f  V,a! = exp  � � [  ! +   � ! ]>

Va ' 2w= o 2 0
v a v a

 A-12!

X = F t! = Q + W, being the sum of the two random variables Q and W, has

probability density function �!,

f  x! = f  y, x-y! dy
X

1 1 x 2 2
exp  - �,[ , ! + y ]

14 a

in which the first term on the right hand side of Eq. A-8 is obviously

zero. The expected values in the second and third terms in Eq. A-8

can be shown, by using the argument leading to Eq. A-7, to be respectively
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IC 2

� ~vp [ � �  ~ + ~!!D
2 2 2 2

C o C a
D v M a

[exp[ � ~+ ~] + exp [ � ~ ~ � ~]!dy,
a C C a a C C a

v D M a v D M a

 A-13!

The integration, however, can only be performed numerically. Thus, the

singularity of the integrand at y = 0 must be removed, By letting y = s,

one obtains, af ter rearranging, expression of f  x! as given in Eq. 16 ofX

the text.

F t! = 2C IV t!la t! + C a t!.  A-14!

The joint probability density function of F t! and F t! can be obtained

again by the standard method of transformation of random variables �!

Thus, let X = F t!, Y = F t!, introduce an auxiliary random variable

Z = V t! and first determine the joint probability density function

f  xy, z! of the random variables XY, and Z. That is
XYZ

f  x,yx,z! - f .  v,a,a! jl Jl  A- 15!

2in which I J I = C is the Jacobian of transformation and the arguments
M

V,a,a, in f .  V,a,a! are to be replaced by
Vaa

V = z

x-cDI zl z

To compute the extected rate of threshold crossings of the fluid

force F t!, the joint probability density function of F t! and its derivative

process F t! is required. It is easy to verify that



and

2c, zl
a = [y  x-c l zlz!]/c

M

 A-16!

In Eq ~ A-15, the function f V ~  V,a,a! is the joint probability density
Vaa

function of V t!, a t! and a t!. Assuming that they are jointly Gaussian,

f, . V, a, a! has the expression �!
Vaa

1

Vaa ' ' , 3/2 1/2
� ! ls

-1 ,2 ~, 2, ~ 2exp [~ S  V-t.'! + 2S  V-ll! a + S a + S, . a ! ],
2]S~ vv Va aa aa

 A-17!

The quantities appearing in Ea. A- 7 are all defined in Eq. 22 of the

text.

 x,y,z!
XYZ

f  x,y,z! dz  A- 18!f  x,y!

and the expected rate of threshold c rt ssings, f rom below, of the process

X = F t!, at threshold level x,

is

E[X  x! ] = yf  x,y! dy
 A-19 !

dz yf  x,y,z! dy.
XY7-

The joint probability density function f  x,y! of X = F t! and

Y = E' t! is the marginal density to the joint probability density function
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The integral with respect to y can be. achieved explicity in closed

form, giving the result shown in Eq. 18 of the text.

In evaluating the quantity E[N  x! ], if the processes X = F t! and

Y = F t! are assumed to be jointly Gaussian, then by stationary assumption

of the processes, they are uncorrelated and therefore statistically inde-

pendent. Thus

f  x,y! = f  x! f  y!
y

 A-20!

in which

1 x-E[F] 2,
exp [-   �!pTf  x!

1

2i c

 A-21!

and

f  y! = exp
1

F

 A-2.2!

are Gaussian probabi l ity density function of X = F t! and Y = F t! which

are determined comp! etely by their respective expected values E [F] and F ~ F

[Co. + 4C = o  I+y!j
22,t 2 2 I/2
N a D a

 A-23!

Using Eq.  A-19!,

yf  x,y!dy = f  x! yf  y!dyF.[N  x!] =

F
f  x!

I 2~
X

 A-2 4!

giving the expression shown in Fq. 23.

and standard deviations . and o . The quantities E [F! and o are given ir

Eqs ~ 10 and 12 derived earlier in the Appendix. It can be similarly shown

that E[F] = o and
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2 !

NOTAT ION

The fol lowing symbols are used in this report:

A = quantity used in Fqs. 19 and 20  see Eq, 21!;

a .!, a .! = fluid particle acceleration and its derivative;

C = quantities used in Eqs. 19 and 20  see Eq. 21!;

C , C = coefficients of drag force and inertia force  see Eq. 9!;

D = diameter of cylinder;

E[.] = expected value of the quantity enclosed in the bracket;

2 3
E[F], E[F ], E[F ] = first, second and third moment of fluid force

F t!  Eqs. H!, 11 and 15!;

F .! = fluid force on cylinder of unit length  Eq. 9!;

F . ! = derivative of F t!  Eq. A-14!;

f  . >.! = joint probability density function of the random quantities
OW

Q and ~'  Eq. A � 11!;

f  . ! = probability density function of fluid par ticle velocity V t!
V

 Eq. A-3!;

f,  , ! = joint probability density function of fluid particle velocity
Va

V t! and acceleration a t!  Eq. A-12!;

f .  ...,.! = joint probability density function of fluid particle velocity
Vaa

V t!, acceleration a t! and its derivative a t!  Eq. A-17!;

F  .! = probability distribution functior of K = F t!  Eqs. 16 and A-2 1!;
X

f  .! = probability density function of X = F t!  Eqs. 16, 17, A-13!;
X

f  .,! = joint probability density function of X = F t! and Y = F t!
XY

 Eqs. A-18 and A-20!;

f  ...! = joint probability density function of X = F t!,
XYZ

Y = F t! and Z = V t!  Eq. A-15!;

f = probability density function of Y = F t!  Eq. A-22!;
Y
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g = gravitational acceleration;

I, I = quantities defined in Eqs. 19 and 20;

~3 ~ = 2acobian of transformation of random variables  Eqs. A-ll and

A-15!;

K, K = drag and inertia coefficients;
D'

n = f requency;

n = g/W;
0

P y! = T x!dx, the error function',

Q = C V~ V, a random quantity;

q = dummy variable;

~SI, S , S... S ., S = quantities defined in Eq. 22;aa' aa' va' vv

s = dummy var iab le;

t ime;

current speed;

V . ! = fluid particle velocity;

v .! = V .! � U, oscillatory part of fluid particle velocity;

C a;

mean wind speed;

dummy variab les,

F t!, a random quantity;

dummy variable;

F t!, a random quantity;

dummy variable;

V t!, a random quantity;

o.,I3 = constants in surface wave spectrum  Eq. 2!;
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y = U/-- v

y = skewness  Eq. 13!;
1

o = density of water;

2
n = C ct /2C

Ma Dv

standard deviations of fluid particle acceleration, its
a' a' v

derivative and ve1ocity  Eqs. 7, 8 and 6!;

standard deviations of fluid force and its derivative  Eqs. 12 and 24!;
F, F

G ,!, <  .! = frequency spectra of surface waves with and without the inf1uence

of current  Eqs. 1 and 2! and

 , !, +..  . !, 0  . ! = f requency spectra of f luid particle accelerat ion,
aa ' ' aa

its derivative and velocity  Eqs. 4, 5, and 6!.
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