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SOME STATISTICAL PROPERTIES OF
WAVE-CURRENT FORCE ON OBJECTS
INTRODUCTION

When wave encounters current, its characteristics change; if the
current is in the direction of wave propagation, wave amplitude decreases
and its length increases, but if the current opposes the wave, the wave
steepens and shortens. These changes are due to the interactions between
current and wave as was explained in Ref. (5). Tn a random wave field,
component wave amplitude and wave length experience similar changes resulting
in modification of frequency and wave-number specira of surface waves (3}.
Anticipating that fluid force, being directly related to fluid field kinematics,
would be similarly affected by the presence of current, properties of the spectrum
of fluid force on cylinder were investiaged (10). Two cases were examined; that
is, when current was simply superimposed on waves and when wave-current incer-
actions were considered. Tt was shown that drastic changes indeed tock place
in fluid force spectrum particularly when interactions are considered.

Safety analysis of flexible ocean structures requires consideration
of both catastrophic and fatique failure. The probability function and
expected rate of threshold crossings of stresses induced in the structures
are the two quantities widely used in this connection (2,4,9).

in this report, the influence of current on such statistical quantities
as the mean, standard deviation, skewness, probability function and expected
rate of threshold crossings of random fluid force are studied both with and
without wave-current interactions considered. The effects of current and
wave-current interactions on these quantities are clearly noted. For simpli-

city, only deep water stationary random waves under the influence of a steady



current uniformly distributed in depth are ceonsidered. The fluid force is
evaluated at an element of a cylinder of unit diameter and unit length sit-

vated immediately beneath the mean water level.

SPECTRA OF WAVE FIELD KINEMATICS
In evaluating fluid force, the Morrison's formula is used in this
study. That is, fluid force is considered to comsist of two parts, the
inertia component, linearly proportional to fluid particle acceleration,
and the drag component, nonlinearly related to fluid particle velceity.
In subsequent computation of the statistical properties of fluid force,

the quantities o , the standard deviaticn of fluid particle velocity and

S s those of fluid particle acceleration and its derivative are re-

quired. These quantities in turn are determined from their respective
gspectra. Thus the influence of current on wave frequency spectrum and
spectra of fluid particle velocity, acceleration and its derivative are
discussed first.

It was shown {3) that under the action of a steady current, the
frequency spectrum of the surface waves of a stationary gravity wave field

in deep water is given by

*
4¢ (n) (1)

(e 28y 12 ARy e )

¢(n) =

] (1 + (1 +

in which n is total frequency, U is current velocity, g is gravitational

s
acceleration and ¢{n) and ¢ (n) are respectively the frequency spectrum



of surface waves with and withcout including the influence of current. In

this study ¢N(n) is taken to be

%
¢ (n) =

g

2

5
n

Yo, 4
exp (=B(=)") (2)

the Kitaigorodskii-Pierson-Moskowitz spectrum, in which o and B are non-

dimensional constants equal to (0.8 x 10_2 and 0.74 respectively and n = g/ﬁ

with W the mean wind speed.

The spectra ¢(n) for various values of currear

speed U are plotted in Fig. 1. It is seen that when the current is in the

direction of the waves, that is, when U is positive, the surface spectrum

is 1

owered.

On the other hand, under adverse current, the surface wave

spectrum increases in magnitude. When the current speed is negative, there is a

cut-off frequency in the surface wave spectrum determined by the condition

1+

tive

and

410n

= 0 beyond which no waves can exist.

The spectra of fluid particle velocity, acceleration and its deriva-

at mean
—c)
¢ (n)

aa

¢éé(n)

The standard

water level are given by

n2¢(n)

na¢(n)

n6¢(n).

(35

(4)

(5}

deviations of I, of fluid particle velocity and SO of

a

fluid particle acceleration and its derivative are respectively obtained

from

oy = 1} o man’/

n

2

(6)
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Fig. 2 shows the effect of wave-current interactions on the fluid
particle velocity spectrum ¢Vv(n) under various current conditions. Spectra

of fluid particle acceleration and its derivative exhibit gimilar characteristics

and are not shown.

STATISTICAL MOMENTS OF FLUID FORCE
The fluid force on the cylinder of unit length, according to Morrison's

formula is

F(t) = CDV(t)W(t)] + Cyalt) {9)

in which a(t) and V(t) are respectively the fluid particle acceleration
and velocity with v{t) = v(t} + U, v(t) being the oscillatory wave induced
particle velocity. In Eq. Y, CD = pKDD and CM = pKM E%~ , with p, density
of water, D, diameter of cylinder and KD = 0.9 to 0.7 and KM = 1.4 to 2.0
the drag and inertia coefficients (6). In this study, the values of KD and
KM are chosen to be 0.5 and 1.4 respectively, and for convenience, but without
less of generality, p is set equal to unity.

The expressions of the various moments of the random process F(t)
werederived by Borgman (1) using the moment generating function. These

quantities are rederived in the Appendix in a more direct manner. The
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expected value or the mean of the random force F(t) is

2 2
E[F] = 2CDGV[YT(Y) + (L + vy)P(v)] (10)
in which E [.] denotes the expected value of the random quantity enclosed

in the bracket, v = U/oV is a parameter measuring the strength of current,
Y
) f
exp(-y~/2) and P(y) = | T(x)dx is the error fumction (7). In

2n o
Eq. 10, the argument t of F(t) is omitted for convenience. Under given wind

T(y)} =

and current conditionms, the expected value of the fluid force can be computed
from Eq. 10 using Egs. 1 through 4 and Eqs. © and 7. 1If wave~current inter-
actions are ignored, that is, if it is assumed that current does not affect
wave characteristics, E{F] can still be obtained from Eq. 10 in conjuncticn
with Egqs. 2, 3, 4, 6, 7 with $(n) replaced by ¢*(n) in Egqs. 3 and 4.

In Fig. 3, the absolute value of E[F] is plotted as a function of
current speed U with and without wave-current interactions considered and
with wind speed as parameter. In the former case, the curve is skewed,
indicating that when U > o, waves are dampened thus reducing the value of
the expected fluid force whereas, when U< o, waves are amplified causing
an increase in expected fluid force. When interactions are neglected, the
curve is necessarily symmetrical. Figure 3 alsc shows that the magnitude
of the expected fluid force increases with increase in current and wind
speed.

To further investigate the effect of wave-current interactions on

E[F], the ratio of E[F] with and without interactions considered is presented



d0d0d qINTd 40 NVHIK

‘L 0014

ELTASUING L

SUOL)IRAIIUL FNOYJ LM

SUOL]ORAIIUL YF LM

0t

AY/T LW 0Z=M

Ay /T W Q=M



-

in Fig. 4 against current speed with wind speed as parameter. [t is seen

that under moderate current conditicns increase in wind speed tends to lessen

the effect of interactions. As current speed increases, current predominates

the expected value of F(t) thus reducing the importance of interactions and

the lesser the wind speed, the earlier current overpowers the expected fluid

force and the gooner the effect of interactions diminishes. Finally, for

the range of wind and current speed considered, the maximum effect of inter-

actions on D[F] is about 20% when U <o and 12% when U > o. That is, the phenomenon
of interactions is more pronounced when U < o as indicated in Figs. 1 and @.

The second moment of the fluid force F(t) is

2 22 2 4, 4 2
E[F7] = CMUa + CDcv(y + 6y + 3) {(11)
and the standard deviation Ip of F(t) is
2 2
e = E&[F] - ELF A (12)

F

Plotted in Fig. 3 is the ratio of Ie with and without current, as a function

of current speed. When no interactions are considered the curve is symmetrical
and, with interactions the curve is skewed. It is noted that for moderate
positive values of current speed, the standard deviation of fluid force drops
slightly below that when there is no current. For all the cases presented

in the figure, the weaker the wind condition, the more susceptible it is

to the influence of current except when U <o and when wave-current inter-
actions are taken into account. This is due to the fact that waves produced

by lesser wind undergo excessive breaking in adverse curreat thus reducing

the value of T The influence of interactions on Op is also clearly exhibited
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in the figure. That is, for U > o, the stronger the wind, the less important
is interactions phenomenon, but the situation is reversed when U< o. This
can again be explained by the wave breaking phenomenon. Finally, for the
wind and current speeds considered the maximum effect of interactions on OF
can be as high as 50% indicating that interactions are more important for
Op than for E[F].

While the expected value and standard deviation of F(t) give indications
of the average value and spread of the probability demsity function of F(t),
its skewness may be measured by

3 3

v, = E[(F - E[F])" /o (13)

in which the numerator is the centra!l third moment of F(t) and is related

to E[(F], o, and E[F3] as

F
E[(F - E[F])°] = E[F°] - 30§E[F] + 30F52[F1 - E3(F]. (14)

In Eq. 14 the term E[F3] is the third moment of F(t) and is given by

4 2
3, 3 3,yT(y) Y+ eyt +33 12
E[F’] = CMoa{ 7 [ 3 +
6 4 2 . 2
+ + 45y° + 15 | 3(1 +
ooy LY s 2 )y (15)
4

. . B 2
in which A = CMGa/ZCDov.

In Fig. 6, the absolute value of Yy is plotted. Several trends are
noted in the figure. First, for a given current speed, the stronger the
wind, the more skewed is F(t) but less is the influence of interactiocns.

Secondly, skewness of F(t} increases with increase in magnitude of current



42404 A0 SSHUNMAAS

"9 MNOIA

S 1 £ Z I L- 2- £- - 5-
| T T T T T 1 T T T
A.umw\.u+v: \\\ ////
\\\ ////
\\\\ \\ ff!f
W /
- . \ /
AU/ W gZ=H o / L
/ 01 / "ay/ (W 0Z=M
Y/ W Op=M -
Ay /o Ct=M
02
SUOLIIBJ3UL JNOYILM
SUOLIDRADIUL YLM
0°¢ 4

||




speed until current predominates when the force F(t) becomes almost
deterministic. Finally, under moderate current condition, wave-current
interactions tend to make F(t) more skewed than when no interactions are
present and negative current renders F(t) more skewed than positive current

does unless interactions are ignored in which case the curve is symmetrical.

PROBABILITY FUNCTION OF FLUILD FORCE

It was pointed out by Pierson and Holmes (6) both by theory and field
observations that the force F(t) = CDV!Vi + CMa, being a linear combination
of the Gaussian inertia force and non—-Gaussian drag force, is non-Gaussian.
It was further noted that the parameter * = C o [f2C Gi is a measure of the
relative importance of the inertia and drag components of fluid force and
therefore alsc serves as an indicator of the degree of closeness of F(t)
to a Gaussian process. Thus, the smaller the value of », the more important
is the drag force relative to the inertia force and the more F(t) deviates
from Gaussian. Although there was no current invelved in the work of Plerson
and Holmes (8), the same conclusion was noted by Borgman (1) when the fluid
particle velocity V{t) may possess a non-zero mean. It is therefore of interest
to investigate, before taking up the subject of the probability function of
the fluid force F(t), the influence of wind and current on the quantity X.

In Fig. 7, the quantity X is plotted against current speed. It is
seen that when no interactions are included, A is independent of current

condition. When interactions are considered, current invariably renders

the process F(t) less Gaussian, more so when the current speed is negative
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than when it is positive. It is also observed that the higher the wind
speed, the farther removed is F(t) from being Gaussian but the effect of
interaction on the value of X is also reduced. It shcould be mentioned here
that neither the moments nor the quantity * can provide complete and accurate
information regarding the probability structure of the random process F(t).

A more complete description of the process F(t) is contained in the pro-
bability density function.

The expression for the probability.density functicn of F(t) was derived
by Borgman (1) although no numerical result was given. In this study, for
case of reference, the probability density function fx(x) of X = F(t) is
rederived, using a slightly different approach, in the Appendix. The pro-

bability density function of X = F(t) as derived, is

TR 1 x 2.2 2
f {x) = { expl - 5 ( +s8 ) - Aa(s + )" 1ds
X ZﬂCMca o 2 CMGa %T
1 2.2 oy 2
+ exp[ - 5 (C - s ) ais 'E?) lds }. (16)
s M a

The integrals in Eg. 16 can not be carried out exactly and are there-
fore performed numericaily.

Presented in Fig. B8a, are the probability demsity functions of
X = F(t) with current speed U = 0, and U = 3 ft./sec, When U = 3 ft./sec.,
both the cases with and without wave-current interactions considered are
given and for all cases considered the corresponding Gaussian approximation
is alsc presented, When fluid force X = F(t) is assumed to be Gaussian,

the probability density function fx(x) is given by
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£ () = —— exp [ -

ZWUF

% (X;—E[f-]-)zl an
¥

with E[F] and % given in Eqs. 10 and 12 respectively. It is seen that
when U = 0, fx(x) is but slightly non-Gaussian. However, when current
is present, fx(x) becomes skewed and therefore non-Gaussian. In Fig. 8b,
the case of U = -3 ft./sec. is shown. When no interactions are taken intc
account, fx(x) and its Gaussian approximgtion are merely the mirror image
of those of the case U= 3 ft./sec., presented in Fig. 8a. When wave-current
interactions are considered, it is seen that fx(x) deviates appreciably from
its Gaugsian approximation.

The departure of fx(x) from Gaussian can also be seen by plotting
the probability distribution function FX(X) of X = F(t) on Gaussian {(normali)
probability paper. The cases of U = 3 ft./sec. and U = -3 ft./sec. are pre-

sented respectively in Figs. 9a and %b. That fluid force is non-Gaussian is

clearly noted.

EXPECTED RATE OF THRESHOLD CROSSINGS OF FLUID FORCE
The expression of the expected number fluid force crosses threshold
level x, from below, per unit time, denoted by E[N 4 (x)] and derived in

the Appendix, 1s

I, +1

BN, (0] = - (18)
CZ(ZW)3/2!8!1/2
M

in which
_ S ) s  x-C_lzlz
_ l§i NV 2 _ a D 2
1, =% 1 expl E'Igfz U) " Jexp| 2|5$ <y ) 7]
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expl - rs(B - O lez (19)

and

sl A 1 2
1 =g dz(B—EE)exp[— **E{z - M)

2 - 20
v
x=C z|z|
1 D 2..1 C A
exp[~ —5(—¢ )G - P(TET(B -5 (20)
20 M
a
In these expressions,

A= ZSVé(z - U)/CM
B = 2CD|z|(x - cD|z|z)/cM (21)

2

and

|S[ =g 020. - 06

a a
S = 020%
vv a a

4

S,5 = %a (22)
S = |S|/02
aa a
S., = 0202
aa a

The integration with respect to z in Egs. 19 and 20, of course, can only

be performed numerically.

Computed and presented in Fig. 10a and 10b are the quantity E[N+(x)]
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for wind speed-ﬁ = 20 ml./hr., for the cases when the current is in the
direction of (U = 3 ft./sec.} and opposite to (U = -3 ft.,/sec.) the waves,
In each case, two separate conditions are examined. That is, when wave-
current interactions are considered and ignored. From these two figures,
it is immediately apparent that wave-current interactions have profound
effects on the quantity E[N+(x)].

In dealing with random phenomencn, Gaussian assumption is often in-
volved for reascns of mathematical expediency. It is therefcore of inter-
est to see how Gaussian approximation affects the quantity E[N+(x)]. It

is shown in the Appendix that under the assumptions made,

0.
. __F _ 1 x-E[F].2
E[I\+(X)] = T exp [- S/ 3] (23)
¥ F
and
.22 2202 20172
op = [CMOé + &CDoaoV(l + v (24)

Using the Gaussian Assumption of fluid forces, the quantity E[N+(x)}
is computed for W= 20 ml./hr. for all the cases covered in figures 10 a and
10b, and is presented in the same figures. ln addition, in Figure 10c, the
exact value of E[N+(x)] and its Gaussian approximation are given for the case
when there is no current. That Gaussian assumption is inadequate to use in
the evaluation of fatigue damage when current is involved is cbvious from
these figures. This is especially sc when wave-current interactions are
included and when current speed is negative. The deviation of the approximate
E[N+(x)] from its exact value is due largely to the fact that while the pro-

cesses F{t) and F(t) are truly uncorrelated, they are actually not statistically

independent, a fact which the Gaussian assumption of the processes fails to
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reflect.

CONCLUDING REMARKS

in this report, it is shown that in a random wave field, the pre-
sence of even a moderate current can affect the statistical properties
of fluid force studied here to an appreciable extent especially when the
phenomena of wave-current interactions are considered. Gaussian assump=
tion, while convenient to use, is decisively inadequate in the evaluation
of probability function and expected rate of threshold crossings of fluid
force, quantities one must contend with in the evaluation of the safety

of ocean structures against catastrcptic and fatigue failure.



FICURE 10a EXPECTED RATE OF THRESHOLD CROSSINGS OF FORCE where U = 3 ft./sec.
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FIGURE 10b EXPECTED RATE OF THRESHOLD CROSSINGS OF FORCE where U = -3 fr./sec,
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FIGURE 10¢ EXPECTED RATE OF THRESHOLD CROSSINGS OF FORCE where U = 0
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APPENDIX

The expected value, standard deviation, skewness, probability
function and expected rate of threshold crossings of fluid force F{t)
defined in Eq. 9 are derived in the following.

The expected value of F(t) given in Eq. 9 is cbtained by taking

the expected value of the quantities on both sides cof the equation.

That is,

E[F] = C

(Elal + CLE[V[V]] (&-1)

in which the argument t of F(t), V{t) and a(t) is omitted for simplicity.

Assuming that the sea is Gaussian and a(t) has zero mean value, then E[a] = o
and
E(v|v]i = v\v[fV(V)dv (A=2)
in which
£ 0 = 2 e [ -5 5D (a-3)
QﬂUV v

is the probability density function of the stationary random process

V(t). The integration in Eq. A-Z can be carried out by making the
transformation of the variable of integration v = (V - U)/Uv and separating
the integral into two integrals with limits of integratien from - = te

-y and from -v to - respectively. Within these limits of integration the

absolute sign in Eq. A-2 can be eliminated and the integration can be per-

formed without difficulty. The expe ‘ted value of F(t) is finally as shown



-15-

in Eg. 10 of the text.

The second moment of F(t) is obtained by first squaring both sides

of Eq. 9 and taking the expected value. That is,

E(F°] = CE[(v + 0] + cila’] + 20,0, Elatv + Div + U[1. (a-)
The expected value in the first term on the right hand side of Egq. A-4
can be further reduced to

Flev + B = v + suElv®] + sUPE[v?] + as(v] + U

-3 s er®el w0t (A=5)
in which zero mean properties of the Gaussian process v(t) have been

used. The second term on the right hand side of Eq. A-4 is simply

2
0, {A-6)

To evaluate E[a{v + U)|v + U]] = Ela viv|], note that the processes V(t)
and a(t) are stationary and therefore are uncorrelated. Being that V(t}

and a{t) are jointly Gaussian, they are statistically independent, giving

E{a(v + U)]v + vl] = E[aV|V|] = E [alE[V]V]]. (A7)

But since Ela] = o, the third term on the right hand side of Eq. A=4 is
therefore equal to zero. The final expression of E[FZ] is glven in Eq. Ll.
The third moment of F(t) can be similarly obtained by first forming

the product Fj(t) from Eg. 7 and taking the expected value. That is

3 3.3 2 2 2 4 3 5.
E(F’] = CyE[a”] + 3CCFla viv|] + 3C,CyELaV ] + CE[VT]V ] (A-8)
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in which the first term on the right hand side of Eq. A-8 is obviously
zero. The expected values in the second and third terms in Eq. A-8

can be shown, by using the argument leading to Eq. A-7, to be respectively

E[a2V|V|] = E[aZ]E[V|V|] = ZUzai[yT(y) L+ YPOY) ] (8-9)

and

E[avq] = E[a]E{VQ] = o, {(A-10)
The term E[VS:V‘] can be evaluated in the same manner as E[V[V[] was
evaluated in Eq. A-2., The final result is given 1in Eq. 13,

The probability density function of F{t) may be constructed by
using the standard method of transformation of random variables (7).
Thus, let Q = CDVEVE and W = CMa. The joint probability density functicen

of Q and W can be expressed in terms of that of V and a as

gl |
Fe(@sW) = Ly, 4 E5 ¢ Tl (A-11)
D M
in which |J| = ECDCWEV| is the Jacobian of tramsformation and

1 1..v-1.2 a 2
= - (=) + (= . ~12
fva(V,a) T exp { 2[( - ) (G 171 (a~12)

v a v a

¥ = F{t) = Q + W, being the sum of the two random variables Q and W, has

probability density function (7),

]

fX(x) wi(y, x-y)dy

: 1 2 2 -
- exp - E{(CXG )+ vyl

QHCDCMGVGE Ca
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lc. 2
' D _l. ¥ ¥

Cpoy Cy %4
fexpll I+ —&] 4 exp [ - Lo L - —Z]lay. (A-13)
a C C.o g C C.o
v D M a v D M a

The integration, however, can only be performed numerically. Thus, the

singularity of the integrand at y = O must be removed. By letting ¥y = s,
one obtains, after rearranging, expression of fx(x) as given in Eg. 16 of
the text.
To compute the extected rate of threshold crossings of the fluid
force F(t), the joint probability demsity function of F(t) and its derivative

process F{t) is required. 1t is easy to verify that

F(t) = 2CD|V(t)!a(t) + G a(e). (A-14)

The joint probability density function of F{t) and F(t) can be obrained
again by the standard method of transfermation of random variables (7).

Thus, let X = F(t), Y = F(t), introduce an auxiliary random variable

Zz = V(t) and first determine the joint probability density function

fXYZ(x,y,z) of the random variables X,Y, and Z. That is
= . p - \
fXYz(x,yx,z) fVEa(V,a,a)/|J| (A-15)
2
in which |J| = CM is the Jacobian of transformation and the arguments

V,a,a, in fVaé(v’a’é) are to be replaced by

V=2z

x—CDlz}z

‘M
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and

2c. | 7|

a=[y- _"é'p“f*" (X‘CDIZ|Z)]/CM' (A-16)
M

In Eq. A-15, the function £ aé(V,a,é) is the joint probability density

v

function of V(t), a(t) and a(t). Assuming that they are jointly Gaussian,

fVaé(V,a,é) has the expression (4)

. 1
f., .(v,a,a) 5
Vaa (ZT)3/G1511/2
[-l {s (V—IT)2 + 28 « (V-1Da + 3 2 + 8 ’2) )
exp ETET vv ! Va a aa® 35° 3 (A-17)

The quantities appearing in Eq. A~17 are all defined in Eg. 22 of the

text.

The joint probability density function fXY(x,y) of X = F(r) and

.

Y = F(t) is the marginal density to the joint probability density function

fXYZ(X’y’Z)

fXY(x,y) = fXYZ(x,y,z)dz (A-18)

and the expected rate of threshold crcssings, from below, of the process
X = F(t), at threshold level x,
is

E{N+(x)] = nyY(x,y)dy

(A~19)

= dz nyYZ(x,y,z)dy.
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The integral with respect to y can be achieved explicity in clesed
form, giving the result shown in Eq. 18 of the text.
In evaluating the quantity E[N+(x)], if the processes X = F(t) and

Y = F(t) are assumed to be jointly Gaussian, then by stationary assumption

of the processes, they are uncorrelated and therefore statistically inde-

pendent. Thus

fXY(x,y) = fX(X)fy(y) (A-20)
in which

f o = =t e (- 3EEEEL (a-21)

2re °F
F
and
EiEl 2
£ (y) = 'f%—"”'eXp [- é{iﬂgéfl,) ] (A=22)
Y 270 3

are Gaussian prcbability density funection of X = F(t) and Y = F(t) whick

are determined completely by their respective expected values E[F] and Y
and standard deviaticas . and g The quantities E[F] and op are giver ir

Eqs. 10 and 12 derived carlier in the Appendix. It can be similarly shown

that E[F] = o and

.22, 222 1/2 .
GF = [CMOé + QLD,avv(l + )] . {(A=23)
Using Eq. (A-19),
E[N+(x)] = nyY(x,y)dy = fX(X) ny(y)dy
“F
= — fX(X) (A=24)
|24

giving the expression shown in kg. 23.
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NOTATLION

The following symbols are used in this report:

A = quanticty used in Eqs. 19 and 20 (see Eq. 21);

a(.), &(.) = fluid particle acceleration and its derivative;

3, C = gquantities used in Egs. 19 and 20 (see Eg. 21);

D CM = ccefficients of drag force and inertia force (see Eq. 9):

D = diameter of cylinder;

E[.] = expected value of the quantity enclosed in the bracket;

E{F], E[Fz], E[FB] = first, second and third moment of fluid force
F(t) (Egs. 10, 11 and 15);

F(.) = fluid force on cylinder of unit length (Eq. 9};

derivative of F(t) (Eq. A-14);

i'gj.

~~

S
I

f . (.,.) = joint probability density function of the random quantities
Q and W (Eq. A-11);
£..(.) = probability density function of fluid particle veloecity V(t)
(Eq. A-3);
£, {.,.) = joint prcbability density function of fluid particle velocity
v{t) and acceleration a{t) (Egq. A-12);
f (v4+5-) = joint probability density function of fluid particle velccity
v(t), acceleration a(t) and its derivative a(t) (Eg. A-17);

probability distribution function of X = F(t) (Egs. 16 and A-21);

o)

—

N
I

probability density function of X = F(t) (Egs. lé, 17, A-13);

h

~—

Mo’
]

£ .(.,.) = joint probability density function of X = F(t) and Y = i(t)
{(Egqs. A-18 and A-20);

fXYZ(""') = joint probability density function of X = F(t),

Y = F(t) and Z = V(t) (Fg. A-15);

fY = probability density function of Y = F(t) (Eq. A-22);
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g = gravitational acceleration;
Il’ 12 = gquantities defined irn Egs. 19 and 20;

lJl = Jacobian of transformation of random variables (Egqs. A-1l and
A-153);
KD, KM = drag and inertia coefficients;

n = frequency;

n = g/W;
P(vy) = T{x)dx, the error function;
Q = CD V|V|, a random quantity;

g = dummy variable;

|st, s, S.., 8 ., S = quantities defined in Eg. 223
aa' “aa' "wva  wv

s = dummy variable;

1., 2

T(y) = exp(= 7Y )3

2w
t = time;
U = current speed;
Vv(.) = fluid particle velocity;
v(.) = V(.) - U, oscillatory part of fluid particle velocity;
W= CMa;

W = mean wind speed;

w = dummy variables;

X = F(t), a random quantity;
x = dummy variable;

Y = %(t), a random quantity;
y = dummy variable;

7z = V¥(t), a random quantity;

a,f = constants in surface wave spectrum (Eg. 2);



p = density of water;
. 2
A = CMGa/ZCDUV
00040, = standard deviations of fluid particle acceleration, its
derivative and velocity (Eqs. 7, 8 and 6);
Or c% = gtandard deviations of fluid force and its derivative (Egs. 12 and 24);
»

*
¢(.), ¢ {.) = frequency spectra of surface waves with and without the influence

of current (Egs. 1 and 2) and

>

< . vo )= flui i ion
aa( ), aa( Y, vi( ) frequency spectra of fluid particle acceleration,

its derivative and velocity (Eqs. 4, 5, and 6}.
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